BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation

نویسندگان

  • Joerg F. Hipp
  • Markus Siegel
چکیده

The brain-wide correlation of hemodynamic signals as measured with BOLD fMRI is widely studied as a proxy for integrative brain processes. However, the relationship between hemodynamic correlation structure and neuronal correlation structure remains elusive. We investigated this relation using BOLD fMRI and spatially co-registered, source-localized MEG in resting humans. We found that across the entire cortex BOLD correlation reflected the co-variation of frequency-specific neuronal activity. Resolving the relation between electrophysiological and hemodynamic correlation structures locally in cortico-cortical connection space, we found that this relation was subject specific and even persisted on the centimeter scale. At first sight, this relation was strongest in the alpha to beta frequency range (8-32 Hz). However, correcting for differences in signal-to-noise ratios across electrophysiological frequencies, we found that the relation extended over a broad frequency range from 2 to 128 Hz. Moreover, we found that the frequency with the tightest link to BOLD correlation varied across cortico-cortical space. For every cortico-cortical connection, we show which specific correlated oscillations were most related to BOLD correlations. Our work provides direct evidence for the neuronal origin of BOLD correlation structure. Moreover, our work suggests that, across the brain, BOLD correlation reflects correlation of different types of neuronal network processes and that frequency-specific electrophysiological correlation provides information about large-scale neuronal interactions complementary to BOLD fMRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain state regulation during normal development : Changes in simultaneously recorded EEG - fMRI intrinsic neuronal activity fluctuations

The transition from adolescence to adulthood is a critical stage in the human lifespan during which the brain still undergoes substantial structural and functional change. The changing frequency composition of the resting state EEG reflects maturation of brain function. This study investigated (post)adolescent brain maturation captured by two independently but simultaneously recorded neuronal s...

متن کامل

EEG-BOLD correlations during (post-)adolescent brain maturation

The transition from adolescence to adulthood is a critical stage in the human lifespan during which the brain still undergoes substantial structural and functional change. The changing frequency composition of the resting state EEG reflects maturation of brain function. This study investigated (post)adolescent brain maturation captured by two independently but simultaneously recorded neuronal s...

متن کامل

Comprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents.

It is essential to elucidate the relationship between blood oxygenation level-dependent (BOLD) signals and neuronal activity for the interpretation of the functional magnetic resonance imaging (fMRI) signals; this relationship has been quantitatively investigated by animal studies measuring evoked potentials as indices of neuronal activity. Although most human fMRI studies employ the event-rela...

متن کامل

Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI

Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonline...

متن کامل

Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.

Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015